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Using the g-plane approximation we formulate the equations which govern small
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116 O. M. MEKKI AND J.F. McKENZIE

waves in various types of latitudinally sheared zonal flows which occur at different
heights and seasons in the earth’s atmosphere. However, it is first shown that gravity
waves in a latitudinally sheared zonal flow exhibit critical latitude behaviour where the
‘intrinsic’ wave frequency matches the Brunt-Viisala frequency (in contrast to the case
of gravity waves in a vertically sheared flow where a critical layer exists where the
horizontal wave phase speed equals the flow speed) and that the wave behaviour near
such a latitude is similar to that of Rossby waves in the vicinity of their critical latitudes
which occur where the ‘intrinsic’ wave frequency approaches zero.

In the absence of zonal flow in the atmosphere the geometry of the planetary wave
dispersion equation (which is described by a highly elongated ellipsoid in wavenumber
vector space) implies that energy propagates almost parallel to the f-planes. This feature
may provide a reason why there seems to be so little coupling between planetary scale
motions in the lower and upper atmosphere. Planetary waves can be made to propagate
eastward, as well as westward, if they are evanescent in the vertical direction.

The W.K.B. approximation, which provides an approximate description of wave
propagation in slowly varying zonal wind shears, shows that the distortion of the wave-
number surface caused by the zonal flow controls the dependence of the wave amplitude
on the zonal flow speed. In particular it follows that Rossby waves propagating into
regions of strengthening westerlies are intensified in amplitude whereas those waves
propagating into strengthening easterlies are diminished in amplitude. A classification
of the various types of ray trajectories that arise in zonal flow profiles occurring in the
Earth’s atmosphere, such as jet-like variations of westerly or easterly zonal flow or a belt
of westerlies bounded by a belt of easterlies, is given, and provides the conditions giving
rise to such phenomena as critical latitude behaviour and wave trapping. In a westerly
flow there is a tendency for the combined effects on wave propagation of jet-like vari-
ations of £ and zonal flow speed to counteract each other, whereas in an easterly flow
such variations tend to reinforce each other.

An examination of the reflexion and refraction of Rossby waves at a sharp jumpin the
zonal flow speed shows that under certain conditions wave amplification, or over-
reflexion, can arise with the implication that the reflected wave can extract energy from
the background streaming motion. On the other hand the wave behaviour near critical
latitudes, which can be described in terms of a discontinuous jump in the ‘wave
invariant’, shows that such latitudes can act as either wave absorbers (in which case the
mean flow is accelerated there) or wave emitters (in which case the mean flow is de-
celerated there).

INTRODUCGTION

In this paper we present a comprehensive discussion of the propagation properties of atmospheric
waves, particularly planetary scale perturbations in a rotating atmosphere in the presence of
background zonal winds, which includes such features as the dependence of the wave amplitude
on the zonal flow speed, the classification of the various ray trajectories in different profiles of
zonal flow, critical latitude phenomena which are accompanied by absorption or emission of
waves energy, and wave amplification which may arise when waves are incident upon a sharp
jump in the zonal flow speed.

Many properties of such waves are well established. For example the characteristic feature
of westward phase propagation of planetary scale waves in an ocean has been studied, using the
p-plane approximation, by Longuet-Higgins (1965) who also established the existence of a cut-off
frequency, due to tidal effects, above which they cease to propagate. Lighthill (19674) has
examined the generation of Rossby waves on an ocean by travelling forcing effects. The disper-
sion equation describing the three-dimensional propagation of planetary waves has been derived
by Lindzen (1967) by making use of f-planes. In the classical paper by Charney & Drazin (1961)
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 117

it was shown that the effect on the vertical propagation of Rossby waves of zonal flows in the
Earth’s atmosphere was to make the dominant planetary waves evanescent in the vertical
direction, so that the winds simulate a quasi-solid boundary which prevents the vertical propa-
gation of the large flux of wave energy from the lower to the upper atmosphere. The wave
behaviour at a critical latitude (i.e. a latitude where the zonal flow speed matches the wind speed
in the case of Rossby waves) has been studied by Dickinson (1968) and Lindzen (1970) who have
shown that a transfer of wave energy and momentum to the wind may take place at such latitudes
in a fashion which is somewhat similar to the critical layers for gravity waves in a vertically
sheared flow (see Booker & Bretherton 1967).

Using the #-plane approximation we formulate, in § 2, the equations governing the propagation
of waves in a rotating atmosphere so as to provide a unified view of the various wave modes which
include acoustic gravity-inertial waves as well as very low frequency planetary-scale (Rossby)
waves. It is shown that gravity waves propagating in a latitudinally sheared zonal flow exhibit
critical latitudes where the wave frequency, as measured in the rest frame of the fluid, matches the
Brunt-Viisala frequency, which contrasts with the case of Rossby waves and the more familiar
case of gravity waves in a vertically sheared flow, in both of which a critical latitude or level is
reached when the wave frequency in the rest frame approaches zero. This section is concluded
by formulating the equation governing the latitudinal structure of planetary wave perturbations
in preparation for the subsequent discussion, taken up in the next sections by making use of the
W.K.B. and sharp boundary approximations, of their properties in the presence of zonal winds.

In § 3 a variety of results, for slowly varying media, are established by making extensive use of
the geometrical properties of the wavenumber surface for planetary waves. First it is shown that
in the absence of a zonal flow the geometry of the wavenumber surface (represented by a highly
elongated ellipsoid) implies that vertical propagation of energy is inhibited by virtue of the
nearly cylindrical character of the wave propagation which tends to constrain energy propagation
to liein f-planes. Thus this feature may provide a reason (other than the one given by Charney &
Drazin (1961)) why there appears to be so little coupling between planetary scale motions in the
lower and upper atmosphere. It is also shown that planetary waves can be made to propagate
eastward, as well as westward, if they decay in the vertical direction. (Use is made of this property
in §4 in connection with the possibility of waves being amplified on reflexion from a vortex
sheet.) The distortion of the wavenumber surface, which is caused by westerly and easterly zonal
flows and is depicted in figures 2 and 3, controls the dependence of the wave amplitude on the
zontal flow speed. It is established that Rossby waves propagating into regions of strengthening
westerlies are intensified in amplitude whereas those waves propagating into regions of strengthen-
ing easterlies are diminished in amplitude. The former resultis in qualitative agreement with the
numerical analysis of Simmons (1974), who showed that the amplitude of a planetary wave
disturbance tended to follow the magnitude of the westerly zonal flow. The remainder of this
section is taken up with an investigation of the various ray trajectories that arise in (a) a westerly

et stream, () an easterly jet stream, (¢) an antisymmetric shear flow, (d) jet-like variations of

£ in a uniform wind. The results of the investigation are shown in figures 5-8, which illustrate the
conditions giving rise to such diverse phenomena as critical latitude behaviour, wave trapping
exclusion of waves from centre of a jet, and north to south (or vice versa) penetration of a jet.

The problem of reflexion and refraction of Rossby waves at a sharp jump in the zonal flow
speed is studied in § 4. This situation is the opposite extreme to the W.K.B. approximation so
that the results should be useful in discussing the reflexion process in a continuously varying zonal

15-2
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118 O.M. MEKKI AND J.F. McKENZIE

flow profile if the latitudinal wavelength greatly exceeds the length scale of the variation of the
zonal shear flow. In particular we examine the conditions that can give rise to the amplitude of
the reflected wave being greater than that of the incident wave. (We refer to this as wave ampli-
fication which implies that the reflected wave extracts energy from the background zonal flow.)
This phenomenon occurs only if the waves are evanescent in the vertical direction so as to allow
eastward propagating incident waves from a region of rest to be coupled with transmitted waves
in a region of zonal flow that correspond to westward propagating waves that have been blown
eastward by a sufficiently rapid westerly zonal flow. Such conditions, giving rise to wave ampli-
fication, can be interpreted in terms of the interaction of positive and negative energy waves in
the same way as the over-reflexion of gravity waves from a vertical shear (see McKenzie 1972).

In the last section we investigate wave behaviour near critical latitudes, which correspond to
regular singular points of the differential equation governing the latitudinal structure of the
pressure perturbations. The form of this differential equation enables us to establish an invariant
of the system —analogous to the wave action flux for gravity waves in a vertically sheared flow -
which is independent of latitude except at critical latitudes where it discontinuously jumps from
one constant to another. The proper matching procedure of the solutions across critical latitudes
yields the jump in the invariant, which is accompanied by corresponding jumps in the northward
fluxes of wave energy and zonal momentum. It is shown that a critical latitude is associated with
either an absorption of wave energy and momentum (along with a corresponding acceleration of
the mean flow there) or an emission of wave energy and momentum (which is accompanied by a
corresponding deceleration of the mean flow at the critical latitude).

1. GOVERNING EQUATIONS AND WAVE MODES
Formulation of the equations

The equations of continuity, momentum and energy (the last in its dissipationless and there-
fore adiabatic form) for an inviscid fluid rotating with angular velocity £ under a gravitational
acceleration g are

%;+pdivu =0, (1)

p(%—l;—+2ﬂ/\u)=—Vp+pg, (2)
D Dp

D_f::cz'D—t’ (3)

where u is the fluid velocity, 2 the rate of rotation vector, p, p the density and pressure, ¢ the
sound speed, and D/D¢ = 00t +u-V is the convective derivative.
If we assume a basic state in which the flow is purely zonal then this state satisfies the equation

a1[70/az = _po(g - 2‘911 U)a (4>
Opo/0y = —py 282, U, (5)

in which we have taken local cartesian coordinates with x eastward, y northward, z vertical in
the opposite direction to g, and p,, p, and U are respectively the density, pressure and zonal flow
speed of the basic state.
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 119

When these equations are applied to the atmosphere of a rotating planet it is useful to employ
the Rossby f-plane approximation (see, for example, Charney & Drazin 1961), which retains
the important dynamical effect of the planet’s curvature while neglecting its unimportant
geometrical effect. By employing a f-plane approximation to a rotating isothermal atmosphere

equations (4) and (5) yield
dz dy
Po = Poo CXP(_ )P\~ |7 ) (6)

in which p,, is a reference value of the density and H and L, the vertical and zonal scale lengths,
are given by H = RT|(g—hU), L =RTIfU, (1)
with f=20,=fi+pBy, h=280,=hy—ay,

(fos ho) = 282(sin O, cos b,), (f,a) = (202/a) (cos by, sinb,) ;

0, is the latitude on which f-plane is taken; a the radius of the planet; R the universal gas constant;
and T the temperature. In studying perturbations of equations (1)-(3) about the basic state
given by (4), (5) and (6) we introduce the ‘normalized’ perturbation velocity (see for example
Eckhart 1960) (u*,v*, w*), which is related to the perturbation velocity (u,v, w) by

(w*, 0%, w*) = p§(u,v, w) (8a)

and similarily for the perturbation pressure p and density p we have
(6*,p*) = pit(p:p). (85)
The dependence of the perturbation quantities on time ¢ and west—east distance x is taken to be
of the wave form exp {i(w¢ — £, x)}, where w is the wave frequency and £,, the zonal wavenumber, is
given by k, = sla,

where s is an integer to ensure periodicity. Linearization of equations (1), (2) and (3) about the
basic state yields the following equations for the normalized perturbation quantities

i@p*-ikxu*+(%—§1z)v*+(a%—§%)w* 0, (9)
i@u*-(f-%[yf)v*+(/z+%g)w* — ik, p*, (10)
iov* +fu* = —§§;+§1, (11)

iOw* —hu* = —gé—*+g%—gp*, (12)
i@(lg—p*)—(%—l)%—(%—l)%=0 (13)

in which the Doppler shifted frequency @ is given by the usual relation
O =w-k,U.

Three of the variables (p*, w* and «*, say) can be eliminated in favour of the remaining two
(v* and p*, say) so as to obtain a pair of coupled, partial differential equations which are analogous
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120 O. M. MEKKI AND J.F. McKENZIE

to the ‘residual equations’ studied by Eckhart (1960). Thus, use of (10), (12) and (13) to express
u*, p* and w* in terms of p* and v* yields

. o2 0,1 g ik Nt [H h(f-oUfy)] ..
* o |24 S * i *
e oz—Nz—w;;[ PR A ]p Nz-w,af[L N ]"‘”” (14)
N2 0 1 (0-w )g H w3 oUJoy ].A
L S | IR SR St 7 3 * Py = *
&P Nz—@2+w,%{[ ztem™ 3 & ]1’ +[L (1 @2) ”(f ) )“"” }

(15)
with #* being given by (10) into which we substitute (14) and (15) for w* and p* and N, the
Viisala-Brunt frequency, and w, are given by

2_ & _R_T) ( ?E)
N_H(l ) wr=h(ned

The sound speed ¢ is given by ¢® = yRT,

where 7y is the ratio of the specific heats. Therefore the limit of incompressible fluid motions is
obtained by letting y — oo so that ¢ - co while 7 remains finite.

Eliminating «*, w* and p* from the continuity equation (9) yields the following relation
between p* and v*,

10 o0%p* 1 02—} k2 hk,, 1\ %k
N2—6)2+wﬁ[az2+(_m—2+ = h+(N2—@2+w)A2)‘b*+—(ﬁ_(_ﬁ(y 5)‘—5)1’*]

[ (a6-2)- %) m=mvan)

_anx +[_kw<f—aU/ay)+ -0} LE-h) st 2R 1 i)]

Oy o N2—@d2+wiL\y N—O*+wi H

N2 H _h(f-0oU[oy)\ (* £, h(f=23U[dy) , ]
—N2—(f)2+w,"i[(L— g )(az +7 (hroUez) o ) SHN?

3 N (H h(f-0Uy)
+U*'5E[(Dz Ve ( e )] (16)

The other relation between v* and p*, obtained by multiplying (11) by ¢® and eliminating »*
by means of (10) along with (14) and (15), is given by

(0720 - o2+ LU RGN (H_DT=20R0)

This equation may be used to eliminate v* from (16) to obtain a second-order partial differential
equation for the normalized pressure perturbation p*. The enormous mathematical difficulties
associated with finding solutions to this equation, subject to appropriate boundary conditions,
stem from its non-separability in its independent variables 7 and z and the presence of singular

0z & H

curves.
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 121

2. THE VARIOUS WAVE MODES

From the physical point of view equations (16) and (17) describe a wide and rich class of
possible wave motions in the presence of a background zonal flow, ranging from ‘high’ frequency
acoustic waves at one extreme of the spectrum, through ‘moderate to low-frequency’ gravity-
inertial waves, to very low frequency planetary-scale (Rossby) waves, at the other extreme.
Therefore progress towards obtaining solutions to these equations is best made by adopting
approximations appropriate to the dynamics of the particular wave mode. This is done in what
follows so as to provide a somewhat unified view of the various wave modes.

(@) Acoustic-gravity waves

Let us first consider the equation governing the propagation of acoustic-gravity waves in a
horizontal flow sheared vertically. Thisis obtained by putting f = 2 = 0U[0y = 0in equations (16)
and (17) and using the latter to eliminate »* in the former to yield

24 % 2 2__"2 *
% ( 1+@ +k2(Nw ))p*_l_/c U™

022 4H? ® 0z 0z
op* p* 1\ (N2 —@2)2( 1o} )_(N2—c?)2)62p* _
+[az +H(2 7)] &  0z\N2-@? o o 0. (18)

In a uniform flow (i.e. 0U[0z = 0) equation (18) admits plane wave solutions of the form
exp{—i(k,y+k,z)} provided the Doppler shifted frequency & and the wavenumber vector
(ky» £y k) satisfy the well known acoustic-gravity dispersion relation (see Eckhart 1960)

NN@

k2 = = o (k2+k2) (19)
in which N, the cut-off frequency for acoustic waves, is given by
N, = ¢[2H.

In a shear flow which varies sufficiently slowly in one spatial direction equation (19) may be
regarded as the ‘local’ dispersion equation which determines either the local value of the vertical
wavenumber £, in the case of a vertically sheared flow, or the local northward wavenumber £,
in the case of a flow sheared latitudinally. It is of some interest to construct the wavenumber
surface (i.e. the surface in k space at a fixed frequency w defined by equation (19)) for incom-
pressible gravity waves (obtained from (19) by dropping the first term on the right-hand side)
in a horizontal flow. Cross-sections of this surface taken through planes of £, = constant and
k, = constant are sketched in figure 1(a) and (4) respectively. These diagrams which are
analogous to those constructed by Lighthill (1967 @) and which he used to discuss the various types
of waves generated by a disturbance travelling with uniform speed, can also be used to derive the
conditions for the existence of a critical level and for constructing ray (or wave-packet) trajectories
in a sheared flow.

Within the framework of a W.K.B. analysis a critical level can be defined as a level to which a
wave-packet, being neither reflected nor transmitted there, approaches asymptotically. The
condition for the existence of a critical level for any type of wave motion has been examined by
McKenzie (1972) who showed that if a cross-section of a wave normal surface possesses an
asymptote a critical level can exist provided the properties of the medium vary in a direction
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122 O.M. MEKKI AND ]J.F. McKENZIE

parallel to the asymptote. If we apply this condition to gravity waves in a vertically sheared
horizontal flow with a given o, £, and £, then we see that all of the wavenumber surface cross-
sections in figure 1 (@) are asymptotic to the line £, = w/U and hence a critical level can exist at a
height z., where the flow speed equals the horizontal phase speed w/k, (in agreement with the
original analysis of Bretherton (1966)). The dynamic aspects, as distinct from the foregoing
kinematic ones, of this critical level behaviour can be examined by considering the matching

\ &
” k=w

\\
.g\a\
ngu

N

Cle
=
S

|

R ky=0
b
ky=w0 (o) k=0
—Ntw
U é’,‘
1) N
i U+w

N

Ficure 1. Cross-sections of the wavenumber surface for gravity waves in a uniform horizontal flow taken through
planes of k, = constant (figure 1 (a)) and £, = constant (figure 1 (5)). In figure 1 (a) the wavenumbers curves
are asymptotic to the line £, = w|U, which corresponds to the wave frequency seen in the moving fluid Doppler-
shifted to zero. The wavenumber curves in 1 (b) possess asymptotes at k, = (o + N)/U which correspond to the
wave frequency measured in the rest frame of the fluid, being Doppler-shifted to the Brunt—-Viisila frequency.

procedure across the singularity occurring at @ = 0 in equation (18) and this has been carried
out by several authors (see, for example, Booker & Bretherton 1967; Jones 1967) who have shown
that the wave is strongly attenuated in crossing the critical level provided that the Richardson
number of the shear is greater than about #.

Although the case of gravity waves in a latitudinally sheared flow does not appear to be
appropriate to atmospheric situations it is instructive to examine it. Equation (19), which
determines £, for any given set of values of w, £, and £, as a function of the flow speed U(y), along
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 123

with figure 1 () shows that cross-sections of the wavenumber surface taken through planes of
k, = constant, possess two asymptotes, namely

k= (£ N)|U, (20)

which correspond to the frequency of the ‘laboratory’ frame @ matching the Brunt-Vaisala
frequency N. Thus applying McKenzie’s condition we can deduce that a critical level can exist
where the flow speed attains values such that equation (20) is satisfied. In contrast to the case of
a vertically sheared flow these critical levels (or latitudes) may be approached from one side
only in the fashion

% =ly—ye|

This behaviour is related to the geometry of the wavenumber curves which are asymptotic to
thelines £, = (w + N)/U from only one side, and to the nature of singularity occurring at ® = + N
in equation (18). Since we shall see later that this singularity is of the same type as planetary waves
in a latitudinal shear we refrain from discussing it further here except to remark that the absorp-
tion of the wave at such a critical latitude will be complete since on one side the wave can propagate
and the other it cannot.

(b) Acoustic-gravity-inertial waves

The effect of rotation on the wave modes described by equation (19) can be easily examined
in the simplest case where there is no zonal flow (i.e. U = 0) and the only component of the
Coriolis force is vertical and constant; equations (16) and (17) then yield

1 [o%p* 1 0 N2—@? 1 [0%* k2f2
'N‘—:J[VJF ("4‘}7‘2+F +“—wz—’fi)ﬁ*]+f2_wz[ayz o f’*] =0 (@)
This equation admits plane wave solutions provided that
w2 — N2 N2 — w2
k= 7 (k2 +£3), (22)

which is the dispersion equation for wave motions in an atmosphere rotating with constant
angular frequency fabout a vertical axis (see Eckhart 1960). If N > f; as is the case in the earth’s
atmosphere, vertical propagation is quenched for wave frequencies less than f. This result is
modified if allowance is made for the variation of fwith latitude using the f-plane approximation
(see § 3 on planetary waves).

Equation (22) may be regarded as the local dispersion equation in a slowly varying shear flow
provided that w is replaced by @. We then see that the effect of rotation in a vertically sheared
flow is to ‘split’ the critical level, which occurred at & = 0 in the absence of rotation, into two
critical levels occurring at & = + for £, = (wF f)/U. The process of wave absorption at such
levels has been discussed by Jones (1968) and more recently by Grimshaw (1975).

(¢) Wave modes, including the (-¢ffect, in a zonal flow sheared latitudinally

Finally we now turn to the formulation of the equation governing the propagation of wave
modes including the ‘4’ effect. It is customary to neglect the horizontal component of the
Coriolis term since it can only play a significant role extremely close to the equator where f— 0.

16 Vol. 287. A.
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124 O.M. MEKKI AND J.F.McKENZIE

We shall consider only the case of latitudinal shears so that with 4 = 0U[0z = 0 we obtain, on
substituting (16) into (17), the following equation for p*

1 qogpr (1 @ Nz—‘?ﬂz Lo [R(f=U) &% 11 1
N2—62[622+( aEtET T k)p] 5{611_[ 5 = L(ﬁ_?f)“

X{J[_(T_g_,)__m[?g@fp*_ﬁ“
=N2]i2@2gf(f—llf’)—“az(ap A ) (23)

in which, by comparison with equation (18) and (21), we can note the appearance of extra
terms due to the variation of fand y (the f-effect) and U with y (the effect of latitudinal shear).

Since we have assumed 0U/0z = 0 we can transform (23) to an ordinary differential equation
by assuming vertical variations to be of the form exp { —ik,z}. To simplify this equation further
we neglect terms of O(L~') compared with £, f/& (the ratio of the former to the latter is

O{(&[f)U](10*ms)},

which for even ‘moderate’ frequencies is very small in the Earth’s atmosphere) so as to obtain
the following equation governing the latitudinal structure:

a2 2 _
T +b-le=1a)g =0 (24)
in which the normalized pressure perturbation p* has been renormalized such that
p* = pexp(~1fady) (254)
. _ =2pf+ U (20k,—p)—fU" ., H N?
with a= F=T) =6 +1/ch Vo (250)
JU=U) — ( 2 1 @) 2
b= \“Roamta)k
ke 2028 +fU' (20k, + ) —f2U" H fN? ]
ol T e ThIFe (25¢)

in which we recall that
S=h+By, fo=202sinb,, p = (22/a)cosb,.

In slowly varying wind shears asymptotic (i.e. W.K.B.) solutions to (24) may be written in

the form 6 = A(y) exp{—iS(y)), (26)
where 4(y), the slowly varying wave amplitude, and S(y), the phase, are given by
ds)2 1.d24
(&) - g (272)
constant
4 =Wexp (f Ydy), (275)

in which X and Y are respectively the real and imaginary parts of the coefficient of ¢ in (24), i.e.
X=Re(b—%a2-13%da’), Y =1Im(b—1}a®—3a).
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 125

Since 4 is assumed to be slowly varying the term 4”/4 can be neglected on the right-hand side of
(27a), which may be called the ‘local’ dispersion equation which determines the local latitudinal
wavenumber £, by the relation
ds)? ,
k§=(@) ~ X = Re(b—}a%—1da'). (28)

This equation contains the complete spectrum of wave modes in a latitudinal shear flow
ranging from low-frequency planetary waves on the one hand to high-frequency acoustic waves
on the other. In the next section we shall examine the properties of this equation under the
planetary-wave approximations.

However, before proceeding to do this we note an interesting effect of the presence of the
imaginary terms in (255) and (25¢); this is that in the case of reflexion from a discontinuity (or
wall) located along some given latitude the reflected wavelength in the latitudinal direction
would be different from the incident wavelength by an amount

i L
N?  Hk,
"This follows from (254) and assuming waves of the form exp { ¥ ik, z} with the upper (lower) sign
referring to the incident (reflected) wave.

3. THE PROPAGATION OF PLANETARY-SCALE (RoOSsBY) WAVEs
IN A ZONAL FLOW

Using the W.K.B. approximation we investigate the propagation properties of planetary
waves in: (a) a zonal flow with latitudinal shear including such flow profiles as easterly and
westerly jet streams, and a belt of westerlies bounded by a belt of easterlies, all of which forms
occur in the earth’s atmosphere at different heights and seasons (Murgatroyd 1965; Lindzen &
Siu-Shung Hong 1974); (b) a constant zonal wind but taking into account the variation of ‘8’
with latitude, with it attaining its maximum at the equator and falling off symmetrically on
either side.

(a) The planetary-waves dispersion equation

Since we make extensive use of the geometrical properties of the planetary wavenumber
surface in deducing the various types of ray trajectories that can arise in cases (a) and () above
we first examine its properties. The planetary wave dispersion equation can be derived from
equation (28) by making the following approximations:

(i) incompressible fluid motions (y - o0);

(ii) & <€ N-quasi-hydrostatic motions;

(iii) @ < f-quasi-geostrophic motions;

(iv) the imaginary part appearing on the right-hand side of (255) is neglected so that
a ~ — 2f3[fsince the ratio of it to the real part is of order {k, H tan 0, sin 0, U/(10® m s~1)} which is
small for wind speeds of the order of tens of metres/second:

(v) (Bf3)](kyB]0) ~ (26/sf) cot O < 1. From the dynamical viewpoint these approximations
imply that when the wave motions are quasi-hydrostatic and geostrophic the rate of change of

16-2
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126 O.M. MEKKI AND J.F. McKENZIE

vorticity of a fluid element is balanced by the latitudinal change in planetary vorticity. With the
above approximations (28) simplifies to

Bks _ _J? L
Bkl L (k2 , H2) (294)
2 2 2
or alternatively k2 + (kx+%) 1%5 i (k2 v} H2) (290)

Comparing (29a) with the gravity-inertial wave dispersion equation (22) we see that & has been
dropped from the terms &% — 2 and N2 — #?2; N3}/c? has been replaced by its equivalent form }H-2
and the g effect appears through the term f%,/d. This form of the dispersion equation shows that
the propagation of atmospheric Rossby waves in horizontal directions is analogous to two-
dimensional propagation in an ocean of depth d, where d—! is equivalent to H(k2+ 1H™2) (see,
for example, Longuet-Higgins 1965 or Lighthill 1967a).

In the absence of a zonal flow and at a fixed frequency w, equation (29) represents in k space
an ellipsoid of revolution, with axis the line parallel to the £, axis displaced — f/2w units along
the £, axis, and ratio of major to minor axis N/f. Cross-sections taken through planes £, = constant
are concentric circles of radii

9 2 3 -

The well-known result that phase propagation of planetary waves is westward follows from the
fact that such cross-sections lie entirely in the half space £, < 0 (since we have assumed the
waves to be of the form exp {i(wt —£,x)}).

The value of the vertical wavenumber at which the radius of the circular cross-section vanishes
corresponds to the ultimate £, permitting northward (or southward) phase propagation and
provides the spatial counterpart of the cut-off frequency, given by (f%gd[4f?)}, above which
Rossby waves cease to propagate in an ocean of depth d (Longuet-Higgins 1965). In the Earth’s
atmosphere the minimum cut-off frequency, obtained by putting £, = 0, normalized to the
angular frequency of rotation is (NH[a) cot 6, which corresponds to a period of 2 x 2tand,
days (in which we have taken 2n/N = 5 minutes and // = 10km). An interesting propagation
feature arising from the existence of a large value of N[f, which is more than 102 in the Earth’s
atmosphere, is that since the ellipsoid is extremely elongated along its axis of revolution and can
therefore be approximated by a cylinder, wave packets, or rays, are constrained to propagate
very close to horizontal planes. This follows from the fact that the direction of a ray is parallel to
the normal to the wavenumber surface. Thus vertical propagation of energy is inhibited by
virtue of the nearly cylindrical character of the wave propagation, which tends to confine energy
propagation to lie in #-planes. This feature may provide another reason why there appears to be
so little coupling between planetary scale motions in the lower and upper atmosphere. The
classical reason (Charney & Drazin 1961) is that for typical zonal wind profiles the dominant
planetary waves (taken to be characterized by a longitudinal wavenumber of 2, corresponding
to two oceans and two continents, and meridional wavenumber somewhat greater than 2 corre-
sponding to a wavelength somewhat less than 2 x 102km) Rossby waves are evanescent in the
vertical direction (i.e. £2 < 0).

It is therefore interesting to consider the propagation effects of negative values of 42 (i.e. wave
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 127

decaying in the vertical direction). From equation (29) we see that planetary waves can be made
to propagate eastward, as well as westward, for sufficiently large values of —£2, such that

—I2 > 240 — f2{4H2N,

In addition such evanescence in the vertical direction permits northward phase propagation at
frequencies above the cut-off frequency (NH/Qa) cos 8, (day)—.

\

k=0
direction of |/,
increasing

direction of |,| &
increasing

[k

Ficure 2. The planetary wave’s number surface in a westerly (U > 0) zonal wind depicted as curves in the (k,, £,)
plane representing different cross-sections taken through planes of &, = constant. At a given k, the curves
cut the £, axis at three points given by the roots of the zeros of the numerator of the right-hand side of equation
(30a). The k,, indicated in the figure is the ultimate vertical wavenumber permitting northward phase
propagation. Thus equation (30a) represents two surfaces, one a closed surface (a ‘distorted ellipsoid’)
corresponding to westward (k, < 0) phase propagation, and the other an open surface, a plane with an
eastward facing bump, corresponding to westward propagating waves that have been blown eastward (£, > 0)
by the westerly zonal flow.

In order to consider the distortion of the wavenumber surface introduced by a zonal wind
flowing with speed U we write the dispersion relation (29) in the form

_ halke—ky) (Ro—k.) — (f2N?) (A2 + 1/4H?) {(0]U) —k,)}
(0/U) =k,

in which ky = (0/2U) {1 + (1 +4p8U[w?)}}. (300)

K,

(30a)

We use the above form to construct the wavenumber surface as cross-sections taken through
planes of £, = constant. Figure 2 illustrates cross-section in a westerly (i.e. U > 0) zonal flow.
The wavenumber surface is made up of two parts, one part consists of a closed surface (a ‘distorted
ellipsoid’) corresponding to westward (i.e. £, < 0) phase propagation, and the other part, an
open surface which may be visualized as the plane £, = w/U with a bump facing eastward,
corresponds to those westward propagating waves that have been ‘blown’ eastward by the
westerly flow. In an easterly (i.e. U < 0) flow the geometry of the wavenumber surface depends
upon whether or not the magnitude of the flow speed is less or greater than w?/44. If |U| < w?[4p,
it consists of a closed surface (the ‘distorted ellipsoid’) and an open surface which may be thought
of as the plane £, = w/U with a bump facing eastward (see figure 3¢). Figure (35) illustrates the
case |U| > w?[4f when the closed surface becomes embedded inside the plane with the bump.
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128 O.M. MEKKI AND J.F. McKENZIE

These surfaces are the three-dimensional counterpart of the wavenumber curves for two-
dimensional Rossby waves generated by an oscillating forced effect travelling with uniform speed
U (Lighthill 1967a).

In the limit (f/N) — 0 the surfaces become cylindrical. For example, in figure 2, westward
propagation is represented by the distorted circular cylinder one of whose generators is the line
k, = 0, and eastward propagation is represented by the plane £, = w/U with an infinitely long
eastward facing bump running parallel to the £, axis. For simplicity we use this approximation
to the wavenumber surface in the subsequent discussion of the various ray trajectories in different
profiles of zonal flow.

. k
2 direction of |, 7
4 increasing
k=0 ]
direction of |,|
k,=w increasing k=0
> k,=w
—> R

k

A k. Je

ek

(a)

Ficure 3. Cross-section of the wavenumber surface in an easterly (U < 0) zonal flow. (¢) Wavenumber curves for
|U| < w?/48. (b) If |U| > w?[4f the closed surface becomes embedded in the plane with a bump.

(b) The dependence of the wave amplitude on zonal flow-speed

Under the approximations leading to the planetary wave dispersion relation (29) the variation
of the wave amplitude 4, within the W.K.B. approximation, is given by (275) which may be

written A |k,|¥ = constant. (31)

This equation states that the wave amplitude at any flow-speed (or latitude) is inversely propor-
tional to the square root of the local latitudinal wavenumber at that speed (or latitude). Since
a wave packet, in a zonal flow sheared latitudinally, propagates in such a manner that o, £, and £,
are conserved along its path we can follow the change in wave amplitude by determining the
change in £, from one speed to another.

In figure 4 we have sketched the wavenumber curves at a fixed frequency o for various values
of westerly (U > 0) and easterly (U < 0) zonal wind speeds. This figure shows that for a given
fixed value of £, (three of which are indicated by vertical lines intersecting the various wave-
number curves) the magnitude of the local latitudinal wavenumber, £, descreases for U positive
and increasing, but increases for U negative and increasing in magnitude. Therefore from (31)
we deduce that Rossby waves propagating into regions of strengthening westerlies are intensified
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 129

in amplitude while those propagating into regions of strengthening easterlies are diminished in
amplitude (this result has been generalized by Eltayeb & McKenzie (1976) to the case of two-
dimensional hydromagnetic Rossby waves).

Near reflexion points (i.e. £, - 0) the W.K.B. solution given by (31) breaks down and the
reflexion process is then described by a Stokes equation which yields an Airy function behaviour
for the wave amplitude variation (see Budden 1961). The behaviour near critical latitudes (where
k, — o0) is described by obtaining asymptotic solutions near the singular point of the full wave
equation and these are developed in § 5.

0<USURURUS T,

>

U, \U

Ficure 4. The locus of real wavenumbers in the (k,, k,) plane at a fixed frequency for increasing values of westerly
(Uy and G,) and easterly (— Uy, —U,, —U,, — U,) zonal flow speeds. The small arrows drawn normal to the
locus of wavenumber at points of intersection with lines of &, = constant indicate the direction of a wave packet
(ray) at each flow speed. This diagram illustrates that strengthening westerlies enhance wave amplitudes
whereas strengthening easterlies diminish them (see equation (31) and the subsequent text.)

We note that if the flow were sheared vertically (rather than latitudinally) a similar result
would hold, namely strengthening westerlies enhance wave amplitudes whereas strengthening
easterlies diminish them. This statement follows from the result of a W.K.B. analysis which yields
A |k,|} = constant, and an examination similar to that shown in figure 4 of the changes of shape
of cross-sections of the wavenumber surface taken through planes of £, = constant.

(¢) Ray trajectories in zonal flows

Here we discuss the various types of ray trajectories that can arise in different profiles of
sheared zonal flow. This is done by sketching the locus of wavenumbers in the (£,, k,) plane at
successive latitudes and following the direction of small arrows (representing the ray direction)
drawn normal to the locus where it is intersected by a line £, = constant at each latitude. (This
construction has been used extensively to examine ray paths, for example by Lighthill (1967 a) and
McKenzie (1973).) The locii of wavenumbers possesses an asymptote at &, = w/U (i.e. where the
longitudinal phase speed matches the zonal flow speed) where £, reaches to infinity in the manner

k, ~ o] U=kt
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Therefore in accordance with the aforementioned condition (McKenzie 1973) a critical ‘latitude’
Y¢, can exist where U(y.) = w/k, and the ray approaches the latitude in the fashion

x= [y ~Ye
Since the main results of this section are contained in figures 5-8 particular attention should be
paid to these diagrams.

[+,

ypwesterly ‘et
stream’

0
p 8

.
/ |
L

'y
A\

U—0
— {y—>0)

<§]=66) \ k.

THE ROYAL
SOCIETY
~

U—-0 -

y==o0

PHILOSOPHICAL
TRANSACTIONS
OF
o~
(o2}

critical
latitudes

Ficure 5. (a) The locus of wavenumbers in the (£, k;) plane at successive latitudes in a westerly jet-like variation
of zonal flow. For westward (k, < 0) phase propagation the smallest closed loop corresponds to the centre of
the jet while the largest loop corresponds to the wings of the jet. For eastward (k, > 0) phase propagation the
open branches move steadily to the right as the zonal flow speed decreases (i.e. as |y| increases). The various
types of ray trajectories can be constructed by following the direction of the arrows, drawn normal to the locus of
wavenumbers whete it intersects a given line of £, = constant, at each flow speed or latitude.

The six ray trajectories sketched in (4), (¢) and (d) correspond to the lines of &, = constant labelled 1-6.

(b) The ray paths 1 and 2 exhibit critical latitudes where the zonal flow speed matches the longitudinal
phase speed. Ray 1 is reflected northward (or southward) from latitudes where k, = &, (or equivalently where
U = ¢(1+ fe]w?), ¢ = w]k,). The conditions for each type of ray to arise are:

Ray 1 corresponds to k, > £,.(0) or U(0) > ¢(1+ fcfw?).
Ray 2 corresponds to w/U(0) < k, < k,.(0) or ¢(1+fcjw?) > U(0) > c.
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(i) Westerly jet stream

We first consider wave propagation in a westerly jet-like variation of the zonal flow. For con-
venience the centre of the jet is taken at y = 0, where U = Uy, and the flow speed falls off
symmetrically on either side of the centre. Figure 5 (a) shows the geometrical construction which
reveals the various ray paths sketched in figures 5 (4), (¢) and (d).
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 131

Roughly speaking there are three classes of ray trajectories:

Class 1. Rays exhibiting critical latitude behaviour (see rays labelled 1 and 2 in figure 5(5)
corresponding to the lines £, = constant labelled 1 and 2 in figure 5(a));

Class II. Rays that are reflected before reaching the centre of the jet (see rays 3 and 4 in
figure 5 (¢) corresponding to the lines labelled 3 and 4 of &, = constant; ray 2 also falls into this
class);

Ficure 5. (¢) The ray paths corresponding to the lines of k£, = constant labelled 3 and 4 in (a).
Ray 3 corresponds to values of &, such that — ffw < k, < — f[20.
Ray 4 corresponds to — /20 < k, < k_(0).

Note that ray 4 corresponds to westward energy transport whereas ray 3 gives eastward energy propagation.
(d) Ray paths corresponding to lines, labelled 5 and 6 in (a). The values of £, are such that &, < £_(0). These
rays can penetrate through the centre of the jet.

Class I11. Rays that penetrate through the centre of the jet (rays 5 and 6, corresponding to the
lines of £, = constant labelled 5 and 6 in figure 5 (), shown in figure 5 (d) fall into this category).
The conditions giving rise to each type of ray trajectory are given in the legend of figure 5.

The source of each ray may be any point on the ray path since integration of the ray equation,

namely dx/dy = — Ok, ok,

introduces an arbitrary constant which is available for fixing the location of the source. For
convenience in drawing the ray paths we have chosen the origin in each case in such a way that
the ray paths are symmetric about the y-axis.

A close inspection of figure 5 (a) will reveal how the different ray paths are intimately linked
with the changes in shape of the wavenumber curves, induced by changes in flow speed, and its
intersections with the different lines of £, = constant.

17 Vol. 287. A.
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(ii) Easterly jet stream

Next, in a similar fashion to above, we investigate ray trajectories which are possible in an
easterly jet-like variation of the zonal flow. Figure 6 (¢) has been constructed for the situation
where the flow speed at the centre of the jet exceeds the ‘critical’ speed w?/48. The ray paths
corresponding to the intersections of the lines, labelled 1 to 5, of k£, = constant with the wave-
number curves are sketched in figures 6 (5), (¢) and (d). In this case rays of the type defined above
as Class I and IIT arise (see figures 6 (d) and (b) respectively) but Class II type rays are missing.

easterly ‘jet stream”

U—~0
|y}>o0

(a) ]

5 4

F1cure 6 (a). For description see opposite.

Instead we obtain a fourth class, namely:

Class 1V. Rays trapped around the centre of the jet (see ray 3 in figure 6(¢) and ray 6 in
figure 6( f));
and a fifth class defined as follows:

Class V. Rays that ‘emerge’ from a critical latitude and transport energy towards the wings of
the jet (see rays labelled 1’ and 2’ in figure 6 (¢)). In fact the rays 1’ and 2’ are special cases of the
rays labelled 1 and 2, shown in figure 6 (5), that arise if the flow speed at the centre of the jet is
sufficiently large to make thelines k,, = constant (labelled 1 and 2in figure 6 (a)) correspond to an
asymptote of the wavenumber curve at some latitude. We note that if the source of such rays were
near the critical latitude the ray propagates away from this latitude and transports energy
towards the wings of the jet.

From the intuitive point of view it would be natural to think of this type of critical latitude as
a possible ‘emitter’, rather than absorber, of waves. For example if the source of a disturbance
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 133

were located somewhere near the centre of the jet, from which rays 1’ and 2’ are excluded, the
matching of this disturbance across the critical latitude into the region north (or south) of the
critical latitude should be represented by a wave carrying energy away from the critical latitude.
This idea is examined in sections where it is shown that such critical latitudes can act as wave
emitters.

\ » VY /

‘LR

X

%
critical
latitudes

™

NN

Ficure 6. (a) Wavenumber curves in an easterly jet (drawn for |U(0)| > w?/4/3). The ray trajectories corresponding
to the lines of k, = constant marked 1 to 5 are shown in (), (c) and (d).
() Valuesofk, > — /2w yields ray 1. The range — fjw < k, < — f§/2w gives rays of the type labelled 2 which
is the only ray in an easterly jet that can transport energy from west to east.
(¢) The trapped ray 3, corresponding to w/U(0) < k, < — fBw is reflected from latitudes where k, = k_, or
where U = ¢(1 + fcfw?).
(d) Rays exhibiting critical latitudes.
Ray 4 corresponds to the range — 28/w < k, < 0[U(0).
Ray 5 corresponds to values of &, < — 2/]w.

(e) If the zonal speed is sufficiently great (i.e. |U| > 2w?[f) that the lines marked 1 and 2 in figure 6 (z) of
k, = constant are asymptotes of the wavenumber curves at some latitude, we obtain the rays marked 1’ and 2’.
These rays can ‘emerge’ from a critical latitude.

(f) Thetrapped ray, labelled 6, cannot be constructed from figure 6 (a) since it occurs only if [ U(0)| < w?/48
and £, lies in the range 0|U(0) < k,, < k,(0).

17-2
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(iii) Anti-symmetric shear flow

We now consider wave propagation in an anti-symmetric shear flow represented by a belt of
increasing westerlies in the region y > 0 bounded below (i.e. in y < 0) by a belt of increasing
easterlies. The ray paths can be constructed in the same fashion as above. In this case figure 5 (a)
would apply to the region y > 0 with the direction of y increasing in that figure reversed since the
flow speed increases with latitude, while figure 6 (2) would apply to the belt of easterlies, with the
direction of y decreasing reversed. Figures 7 () and (¢) illustrate respectively eastward and
westward propagating rays, exhibiting critical latitudes, confined either to the belt of westerlies
(figure 70) or the belt of easterlies (figure 7¢). Figures 7 (d) and (¢) show that rays with sources
in the easterlies are reflected, either from the belt of westerlies (figure 7d) or before reaching the

y
(a)

4

5 -
(b) (c) 4y
—/\ x
- =
critical
latitude x /\;
LI
critical
latitude
y
() AY
(d)

L E—
critical
P latitude
critical” N
latitudes

Ficure 7. Ray paths in a belt of increasing westerlies (in y > 0) bounded below by a belt of increasing easterlies

(iny < 0) (figure (a)).

(b) The eastward propagating ray in the region of westerlies; exhibiting critical latitude behaviour, corre-
sponds to values of &, > w[U,,, (where U,,, is the maximum speed attained by the westerlies).

(¢) The westward propagation ray, captured at a critical latitude in the easterlies, arises if &, < — | Upyy|.

(d) Westward propagating ray reflected from westerlies and captured at a critical latitude in the easterlies.
The broken curve joining on to the full represents the ray path if the easterly wind does not reach sufficient
strength for a critical latitude to develop.

(¢) Westward propagating ray reflected from regions of weak easterlies and captured in strong easterlies.
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ROSSBY GRAVITY WAVES IN ZONAL FLOWS 135

zero wind line (figure 7¢), back into increasing easterly winds where they can be eventually
‘captured’ at a critical latitude if the wind speed is sufficiently great.

(iv) Effect of jet-like variations of 8 in a uniform zonal flow

Finally we examine the effect of latitudinal variations of £ on the propagation of Rossby waves
in a uniform wind. First let us consider a jet-like variation of # with latitude in a uniform westerly
wind. The relevant geometrical construction for the ray paths is shown in figure 8 (¢) and the ray
paths are sketched in figures 8 (4), (¢) and (d). These show that the main effect of jet-like variations
of £ is to trap the waves about the equator (where f attains its maximum value f,,. Figure 8 (a)
can also be used to deduce that waves are intensified as they propagate northward (southward)
into regions of increasing £. (This follows from W.K.B. waves amplitude variation given by
equation (31).)

y
jet ~like
]gy variation of g

(a)

Y y
7\ % X X
’ S
1 2
() (c)

A=0 | =

[y]=o0 y=0

(d)

Ficure 8. (¢) Wavenumber curves, in a uniform westerly, at different latitudes for a jet-like variation of 8. The
arrows drawn normal to these curves at the points of intersection with a line £, = constant indicate the ray
direction.

(), (¢) and (d) are respectively the ray paths corresponding to the lines labelled 1, 2 and 3 in (a). All rays are
trapped in a jet-like variation of /.

The combined effect of variation in the zonal flow-speed and £ in the propagation of Rossby
waves will depend on the precise profiles of U and f as functions of latitude. However, qualitatively
we can see, by comparing the rays in figures 5(c) and (d) with their counterparts shown in
figures 8 (4) and (¢), that jet-like variation in flow speed and £ have opposite effects. This tendency
for the combined effects of jet-like variations of U and f to counteract each other arises because
for a fixed f the closed loop of the wavenumber curve (representing westward phase propagation)
expands as U decreases (or |y| increases), whereas for a fixed U the closed loop shrinks as f
decreases (or |y| increases). Similar conclusions can be drawn for eastward propagating waves
(represented by the open wavenumber curve) by inspecting the ray labelled 3 in figure 8 ()
and the rays marked 1 and 2, depicted in figure 5 (5). Similarly we can determine the ray paths
that arise in a uniform easterly, flow due to jet-like variations of 8(y). If £(0) < — w?[4U, rays of
the type labelled 1 and 2 shown in 8 () and (¢) are possible. The ray corresponding to the open
branch of the wavenumber curve (which now corresponds to westward phase propagation) is
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similar to that shown in 8 (d) except that the direction of the arrow should be reversed to indicate
westward energy propagation. Therefore in an easterly flow the combined effects of jet-like
variations in U and £ on Rossby waves tend to reinforce each other, because such variations
induce similar changes in the shape of the wavenumber curves.

4. REFLEXION AND REFRACTION OF ROSSBY WAVES
AT A VORTEX SHEET

In this section we examine the opposite extreme to the W.K.B. approximation, namely the
reflexion and refraction of Rossby waves at a discontinuity in the zonal flow speed. Such a study
yields results to which the case of waves with latitudinal wavelength well in excess of the length
scale of variation of the zonal flow should be asymptotic.

Consider two uniform zonal flows separated by a vortex sheet located at the plane y = 0. The
undisturbed flow velocities U;# and U,% are tangential to the sheet, where subscripts 1 and 2
refer respectively to the regions y > 0 and y < 0. A wave incident, from y < 0, upon the sheet
gives rise to a reflected wave, a transmitted wave, and a wave-like distortion of the sheet. The
boundary conditions, namely continuity of displacement and pressure balance at the distorted
sheet, determine the amplitudes of the reflected and transmitted waves.

In regions 1 and 2 the northward perturbation velocity may be written in the form

Vi = exp (ik, y) + Rexp (—ik,y) (y < 0),}
Vst = Texp (ikyqy) (y > 0),

where R and T are respectively the wave amplitude reflexion and transmission coefficients
corresponding to an incident wave of unit amplitude. We have assumed perturbations of the form
exp {i(wt — k,x —k,z)} so that the latitudinal wavenumbers £,; (¢ = 1, 2) satisfy the planetary wave
dispersion equation

(32)

k. 2
L e IRV (33)
6)?: = w"'kx []i‘

The pressure perturbations may be written in terms of the northward velocity perturbations by
using equation (17), which, on using the planetary wave approximations, gives

£V = —ib (%Jr%f *) (34)

The laws of reflexion and refraction follow from continuity of w, £, and £, across the vortex sheet.
(These are illustrated in figure 8 which is drawn for conditions, to be discussed below, giving rise
to wave amplification.) The normal component of the wave vector satisfies equation (33) on
either side of the sheet. Its sign must be chosen in such a way that in region 1 the energy flux of
the incident wave is directed towards the sheet, whereas in region 2 the energy flux of the trans-
mitted wave must diverge from the sheet. If £2, < 0 the ambiguity in the sign is removed by
insisting that the amplitude of the transmitted wave decays into region 2. In this case total
reflexion (i.e. R = 1) occurs as equation (38) and (39) demonstrate since then £, is purely
imaginary. On linearization the kinematic boundary condition, namely continuity of displace-

ment becomes V0, = Vi, (35)
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since the density is continuous at y = 0 although its derivative is not, since the latitudinal length
scales L, and L, are different (see equation (7)). On substituting (32) into (35) we obtain

1+R T
o, " o; (36)
The dynamic boundary condition ensuring pressure balance across the sheet yields
i(1+R) U, 1 R T iTU,
= + = T + : = T + . 37
A Y S 3 I G ) (N S 1% ) Rl (37
The reflexion coefficient, following from (36) and (37), is given by
A—-iB
=C+iB (38)
N __ Ofky Okyy
in which A = BERE, + FLTE — & T+ KLY
- Oy Oy U-U,
R ey oy (%9
O —Ohy Oy,
Ok3,+E2f2 D%KL +EES

Equation (38) shows that wave amplication (i.e. |R| > 1), sometimes referred to as over-
reflexion (Jones 1968), can occur if 4% > C?, which simplifies to

kysk,, < O. (40)

This condition states that wave amplication can arise only if it is possible to find circumstances
in which the northward (and therefore normal to the sheet) components of the incident and
transmitted wavenumbers are of opposite sign.

Without loss of generality we assume region 1 (y < 0) to be at rest, with respect to which
region 2 is flowing with speed U. Waves in region 1 are characterized by the property that their
northward components of group and phase velocities are of opposite sign; thus an incident wave
carrying energy towards the sheet (i.e. northwards) corresponds to southward phase propagation.
Hence wave amplification can arise only if the transmitted wave is characterized by northward
phase, as well as ray propagation. An examination of the dispersion equation assuming £, real,
shows that if the flow is easterly all waves are characterized by their northward components of
phase and ray velocities being of opposite sign. Therefore wave amplification is not possible. When
the flow is westerly waves belonging to the open surface (i.e. those that have been blown eastward
by the westerly flow) are characterized by their northward components of phase and ray
velocities being of the same sign. However, it is not possible for an incident wave in region 1 to be
transmitted as an eastward wave in region 2 since %, (which must be continuous across the sheet)
in region 1 is negative whereas in region 2 it is positive for waves belonging to the open surface.
Thus again wave amplification is not possible.

Qualitatively we can see that the conditions for wave amplification can be fulfilled only if
waves in region 1 were capable of propagating eastward (i.e. £, > 0) and the corresponding
transmitted wave in region 2 were one belonging to the open wavenumber surface caused by the
westerly flow. In § 3 (I) we have seen that if Rossby waves are evanescent in the vertical direction


http://rsta.royalsocietypublishing.org/

'\
A\
=%
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

y \

Py

THE ROYAL A

A A

N

0\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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(i.e. k2 < 0) eastward (i.e. k, > 0) phase propagation is possible in the absence of zonal flow.
Putting 42 = — K2 in (295) gives
B\*_ B [ 1
2 —
Rt (’c *25) ~iw W\ am) (41)
which shows that eastward propagation is possibleif K, > $H~. Figure 9 depicts geometrically the

necessary and sufficient conditions that give rise to wave amplification. These may be written in
the form

% <OA <ky (424)
) . B2 fz - 1\\¢ §8
- 2
in which OA = <4A2 Ng Kz 4:H2 2% (4 b)
- asymptote
K t
/ negative energy
/ wave
N/
o]\ f 2
ty ~
-
medium 2-
U~ (westerly) vortex sheet
VA
medium 1 Aoy
U=0
:\ \
\
N
o \A ke
/ i:\\\
i/
.

Ficure 9. Geometrical construction illustrating Snell’s laws of reflexion and refraction of Rossby waves at a vortex
sheet. Incident waves propagating eastward such that w/U < k, < k,, are amplified on reflexion from the sheet
(see equation (42) and the accompanying text).

and £, is the larger of the two positive roots of the following cubic equation for £,,
ko(ky—ky) (ko —k_) = (f*|N?) (K — 1/4H?) (k, — 0| U) (42¢)

in which £, are given by (300). The first inequality in relation (42a), namely w/U < OA,
ensures that condition (40) is satisfied, while the second inequality, OA < £, ensures that &,
is real since values of &, < £, would yield imaginary values of %,, and would correspond to total
reflexion. The first inequality requires that the westerly flow speed exceeds the minimum east-
ward phase speed in region 1, whereas the second inequality sets an upper limit on the flow speed
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to ensure a propagating (rather than evanescent) transmitted wave. The relations (40) and (42)
may be interpreted as meaning that wave amplification can occur only if the energy density of
the incident wave is of opposite sign to the energy density of the transmitted wave (see McKenzie
1973; Eltayeb & McKenzie 1976). If a wave carries a deficiency of energy as measured in the
laboratory frame it can be referred to as a negative energy wave. This normally arises if the speed
of the streaming motion relative to the laboratory frame exceeds the wave’s phase speed in the
direction of streaming. Thus in the situation depicted in figure 9 the incident and reflected wave
are positive energy waves whereas the transmitted wave, belonging to the open branch of the
wavenumber curve, is a negative energy wave. Therefore if conditions (42) are satisfied an incident
wave with a horizontal phase speed, ¢ = w/k,, lying in the range U > ¢ > w/ky,, will be amplified
on reflexion from the vortex sheets thereby extracting energy from the streaming motion.

5. WAVE BEHAVIOUR NEAR CRITICAL LATITUDES FOR ROSSBY AND GRAVITY
WAVES IN A LATITUDINALLY SHEARED FLOW (PHYSICAL IMPLICATIONS)

In §§ 3 and 4 westudied the propagation of Rossby waves using, respectively, the slowly varying
(W.K.B.) and sharp boundary approximations, neither of which are capable of adequately
describing the proper behaviour near critical latitudes. We now consider the wave behaviour
and its physical implications near such latitudes which correspond to regular singular points of
the differential equation governing the latitudinal structure. This analysis is similar to the one
developed by Booker & Bretherton (1967) for gravity waves in a vertically sheared flow and is an
extension of Dickinson’s (1968) work on the propagation of planetary waves through waves
through weak westerlies.

(a) The wave invariant

The latitudinal structure of the ‘re-normalized’ pressure perturbation ¢ is determined by
equation (24) which, on making the ‘planetary-wave’ approximations, may be written

d2g/dy*+4(y) ¢ = 0, (43a)
in which g(y) =b—%a*—%a (43d)

in which we neglect the small imaginary parts.

If the coefficient of ¢ in 43 (a), i.e. g(¥), is real (i.e. £2 real) it follows from the mathematical
properties of second-order differential equations of the above type that the Wronskian is a
constant; thus if the function ¢ is solution of (43a) and ¢ its complex conjugate, then this fact can
be used to establish an invariant of the system (i.e. quantity independent of latitude y), &, say,
given by _dg
o =Im (¢a;). (44)

The wave invariant 27, which is analogous to the wave action flux for gravity waves in a vertical
shear flow, is constant except at critical latitudes where it is discontinous.

(b) Matching solutions across singular points

Regular singularities of equation (434) occur at & = 0, for ‘low-frequency’ Rossby waves and
at & = + N for ‘high-frequency’ gravity waves. (Although the equation for ¢ is also singular at
@ = f(f—U’) this is not discussed since the corresponding equation for p* is not singular there

18 Vol. 287. A.
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when we take account of 25 (@)). In the neighbourhood of a critical latitude y = y. equation (43)
may be approximated by &g
—Y =0 45
dy? + 7o ¢ (454)
in which, for Rossby waves,

=T _
“Ergaa-vwapy OV Tl b

whereas, for gravity waves,

—(U(e)[U'(ye)) (K3 + 1/4H?) 0t N

2(1-_leN) » U(?/C) ='—7€:—~ (45(,‘)

o

It

with the upper (lower) sign referring to @ = N(— N). The method of Frobenius yields the
following series solutions for ¢,

¢ = Au, + Bu,, (46q)
where 4 and B are arbitrary constants and », and u,, the two independent solutions of (454), are
given by & (= aly=ye)”
Uy = (y-yc)n=ow(—nq_—1)—,
Uy = ulfdy/ui. (460)
The wave nature is brought out by the alternative solution which may be written
¢ = (v —y ) H{CHP[2{a(y —ye) ] + DHP[2{o(y —yo) H1} (47)

inwhich C and D are constants, and H{" and H{® are respectively the first-order Hankel functions
of the first and second kinds. The asymptotic form of the Hankel functions illustrate the propa-
gating or evanescent nature, obtained by the pressure perturbation at points remote from the
critical latitude, which can be joined to W.K.B. type solutions.

In matching the solutions across the singular points we follow the procedure outlined by Miles
(1961) and adopted by Booker & Bretherton (1967) to the problem of critical levels for gravity
waves in a vertically sheared flow. This procedure simulates causality by allowing the frequency
o to have a small imaginary part, i.e. ® = w;+iw; so that a disturbance with time dependence
exp twt is slowly growing in time by assuming that w; < 0. The quantity y —y. in the differential
equation is then replaced by z, say, where

z=y—yo—iwik U'(yc) (484)
=|z|]ei?, D= arctan[%}. (485)

For small values of z the series solution (46a) approximates to
¢ = A(1 —azlog z) + Bz. (49)

Since w; is small arg z( = ®) goes from a small positive (negative) value, for values of y > y. to
nt( —n) for values of y < y¢, when k£, U’ > 0( < 0). Thus the connection of the solutions, obtained
by taking the limit w; — 0, on either side of the critical latitude is given by

¢ = A[1l—a(y—yc)log (y—ye)]+By—yc) (¥ > ye)
= A[1—a(y—yc) (log|ly—yc| £in)]+ B(y—yc) (¥ < ye) (50)

in which the upper or lower sign appearing in front of in is taken according as £, U’ > O or < 0.
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These approximate solutions for ¢ near y = y. can be used to establish the following values for
the invariant .27, given by (44), above and below the critical latitude:

dabove = Im(ZB) (_7/ > ?/c),
Aperow = Im (4B) Fan |A]2 (4 < ye), (51)

where the upper (lower) sign is chosen if £, U’ > 0 ( < 0). It follows that the jump in the invariant
across a critical latitude is given by

‘/2’]\3 A apove = pelow = T AT |A|2 (52)
H |
; — (¢c) Physical implications
= The northward fluxes of energy, F, and zonal momentum, M, per unit mass are given b
O 0 y p g y
7 —
38 5 F = p*v* + pUu*v*,
E 9) M = u*v*, (53)
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where the overbar denotes a time average. The zonal and northward components of the velocity
are given in terms of the pressure by

wt = (@ =f (- U [(F- 0V E + 0k

OF

(54)

o =i == 0N [0 L ko]

Substituting (54) into (53) and using (25a), which is written in form

p* =hp, h=exp(~[tady) = {f(f-U)~o% (55)

we find, by using (44), that F and M can be written in terms of the wave invariant .2 as follows,

F = b, } (56)

M = k.

These equations show that the ‘classical’ relation I = (&/k,) M holds and confirm that .2/ should
be identified as the wave action flux.

We see therefore that a jump in the wave action flux across a critical latitude is accompanied
by corresponding jumpsin the northward fluxes of energy and momentum. Thus a critical latitude
is associated with either an absorption of wave energy and momentum (with a corresponding

A

acceleration of the mean flow there) or an emission of wave energy and momentum (accompanied
by a corresponding deceleration of the mean flow). In other words, a critical latitude can behave
as either a wave absorber or a wave emitter. Consider first a situation illustrating the somewhat
more uncommon view of a critical latitude which behaves like a wave emitter that corresponds
to ray propagation of the types labelled 1’ and 2’, in figure 6 (¢), in an easterly jet. We takey > 0
(so that U’ > 0), choose k, < 0 and sufficiently small that the ray path represents an ‘escape’
trajectory from the critical latitude. From the physical point of view such a path implies that if
the source of the disturbance is north of the critical latitude the main wave propagates northward
away from the critical latitude. If, however, the source of a disturbance is south of this critical
latitude the disturbance must be matched across this latitude in accordance with equations
18-2

OF
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(61)—(53). For large y the radiation condition requires that the disturbance takes the form of an
outgoing wave so that we may write é = Cexp (k)

where C, the wave amplitude at infinity, can be calculated only by solving a particular problem
since it is related to the amplitude of the initial disturbance, the matching procedure across the
singularity, and the structure of the zonal shear. Thus the wave invariant in the region y > y¢can

be written o =k, ICI2, ¥ > Yo,

which is positive since k,, which is determined from the dispersion relation, must be positive to
ensure that the wave carries energy northward. If the zonal flow is symmetric (an easterly jet) so
that a critical latitude exists in the region y < 0 at some y = —y., the disturbance must also be
matched across y = —y. with the corresponding wave propagating southward towards y = — oo,
and the wave invariant in this region may then be written

A ==k, |D]*>, y<-y. (k,>0),

where D is the wave amplitude at y = —oc0. The relative strengths of C and D depend on the
particular problem. However the main point is that the critical latitudes behave as wave ‘emitters’
(since the disturbance within the latitudes is of the evanescent type) and that this emission is
accompanied by a deceleration of the mean flow near such latitudes, so as to account for the
radiation of energy and momentum to |y| = oo.

The more usual case in which critical latitudes behave as wave absorbers is illustrated by, for
example, rays 4 and 5 in figure 6 (d). In this case if the source of the disturbance is north of the
critical latitude the main wave propagates northward until it is reflected southward and is
eventually absorbed at the critical latitude. In the case when the source is south of the critical
latitude (in the evanescent region) a wave is first emitted from the critical latitude, propagates
northward until it is reflected and eventually gets absorbed back into the critical latitude. Thus
in such a case the critical latitude behaves like a ‘source-sink’ combination for wave generation.
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